Symmetries of the Khokhlov-Zabolotskaya equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 201613
(http://iopscience.iop.org/0305-4470/20/6/041)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:27

Please note that terms and conditions apply.

COMMENT

Symmetries of the Khokhlov-Zabolotskaya equation

F Schwarz
Gesellschaft für Mathematik und Datenverarbeitung, Institut F1, Postfach 1240, 5205 Sankt Augustin, West Germany

Received 11 August 1986

Abstract. The group of Lie symmetries of the Khokhlov-Zabolotskaya equation in two and three space dimensions is given.

There has recently appeared in this journal an article by Chowdhury and Nasker (1986) claiming to derive the symmetry group of the Khokhlov-Zabolotskaya equations which describes the propagation of sound in a non-linear medium. The results given there are incomplete and partially wrong. It is the purpose of this comment to report the complete answer for both the two- and the three-dimensional cases. By a suitable choice of constants the equations under consideration may be written as

$$
\begin{equation*}
u_{t x}-\left(u u_{x}\right)_{x}-u_{y y}=0 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{t x}-\left(u u_{x}\right)_{x}-u_{y y}-u_{z z}=0 \tag{2}
\end{equation*}
$$

in two or three space dimensions respectively (Rudenko and Soluyan 1977, p 215). To obtain the full group of Lie symmetries of these equations the reduce package spde which has been developed by Schwarz (1985a, b, 1986) is applied. Upon submission of the equations (1) or (2) it determines the full symmetry group completely automatically. The results may be described as follows. In the two-dimensional case (1) there is one infinitesimal generator which generates a finite subgroup. In addition there are three generators depending on three arbitrary functions of time, i.e. they correspond to an infinite-dimensional Lie algebra. Explicitly the generators are

$$
\begin{gathered}
U_{1}=2 x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+2 u \frac{\partial}{\partial u} \\
U_{2}=g(t) \frac{\partial}{\partial x}-g^{\prime}(t) \frac{\partial}{\partial u} \\
U_{3}=\frac{1}{2} y h^{\prime}(t) \frac{\partial}{\partial x}+h(t) \frac{\partial}{\partial y}-\frac{1}{2} y h^{\prime \prime}(t) \frac{\partial}{\partial u} \\
U_{4}=\left[f(t) \frac{\partial}{\partial t}+\frac{1}{3} x f^{\prime}(t)+\frac{1}{6} y^{2} f^{\prime \prime}(t)\right] \frac{\partial}{\partial x}+\frac{2}{3} y f^{\prime}(t) \frac{\partial}{\partial y}-\left[\frac{2}{3} u f^{\prime}(t)+\frac{1}{3} x f^{\prime \prime}(t)+\frac{1}{6} y^{2} f^{\prime \prime \prime}(t)\right] \frac{\partial}{\partial u} .
\end{gathered}
$$

The generator U_{1} corresponds to X_{1} of Chowdhury and Nasker if a missing y is added to the last term. If $f(t)=t$ is substituted into U_{4}, the generator X_{3} of these authors is obtained if a missing ρ is added to the first term.

In the three-dimensional case which is described by (2) the full Lie algebra of point symmetries is also infinite depending again on three arbitrary functions of time. They may be written as

$$
\begin{aligned}
& U_{1}=\frac{\partial}{\partial t} \quad U_{2}=z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z} \\
& U_{3}=2 x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}+2 u \frac{\partial}{\partial u} \\
& U_{4}=5 t \frac{\partial}{\partial t}+x \frac{\partial}{\partial x}+3 y \frac{\partial}{\partial y}+3 z \frac{\partial}{\partial z}-4 u \frac{\partial}{\partial u} \\
& U_{5}=10 t^{2} \frac{\partial}{\partial t}+\left(4 t x+3 y^{2}+3 z^{2}\right) \frac{\partial}{\partial x}+12 t y \frac{\partial}{\partial y}+12 t z \frac{\partial}{\partial z}-4(4 t u+x) \frac{\partial}{\partial u} \\
& U_{6}=f(t) \frac{\partial}{\partial x}-f^{\prime}(t) \frac{\partial}{\partial u} \\
& U_{7}=\frac{1}{2} y g^{\prime}(t) \frac{\partial}{\partial x}+g(t) \frac{\partial}{\partial z}-\frac{1}{2} y g^{\prime \prime}(t) \frac{\partial}{\partial u} \\
& U_{8}=\frac{1}{2} z h^{\prime}(t) \frac{\partial}{\partial x}+h(t) \frac{\partial}{\partial y}-\frac{1}{2} z h^{\prime \prime}(t) \frac{\partial}{\partial u} .
\end{aligned}
$$

By choosing a special ansatz for the functions $f(t), g(t)$ and $h(t)$ often a finite subgroup is generated which leads to a simple reduction and corresponding similarity solutions. The meaning of these infinite symmetry groups with respect to possible conservation laws does not seem to be obvious.

References

Chowdhury A R and Nasker M 1986 J. Phys. A: Math. Gen. 191175

Rudenko O V and Soluyan S I 1977 Theoretical Foundations of Nonlinear Acoustics (New York: Consultants Bureau)
Schwarz F 1985a Computing 3491

- 1985b Computing 36279
- 1986 The Package SPDE for Determining Symmetries of Partial Differential Equations, User's Manual to be distributed with REDUCE 3.3

